
403:	Algorithms	and	Data	
Structures

Analysis	of	Insertion	Sort
Fall	2016
UAlbany

Computer	Science



Tune-in	exercise

• What	is	algorithm	analysis?
–Means	to	predict	the	resources	needed	for	an	
algorithm	execution.

• What	resources	are	we	concerned	with?
– Running	time	and	memory

• Why	do	we	need	such	resource	prediction?
– To	be	able	to	compare	algorithms
– To	be	able	to	provision	resources	for	algorithm	
execution



Example	of	insertion	sort	on	an	
instance

• Which	is	the	algorithm?
• Which	is	the	input?
• Which	is	the	output?
• What	is	the	instance?

The	algorithm

The	input

The	output

<5,2,4,6,1,3>



Example	of	insertion	sort	on	an	
instance

Take	a	minute	to	think	on	your	own	of	what	is	
happening	at	each	step.



Insertion	sort	(pseudo	code)

This	step	can	be	
reached	when	i=0	or	
if	A[i]≤key.	In	both	
cases	key	is	placed	
s.t. A[1…i]	is	sorted

Input	array	is	1-based

j indexes	
the	whole	

array

i	indexes	
the	sorted	
sequence



Insertion	sort	-- analysis

• Recall	that	each	primitive	operation	takes	constant	
time

• Assume	there	are	n numbers	in	the	input

• c1,	c2,	and	c3 are	constants	and	do	not	depend	on	n

c1

c2
c3



Insertion	sort	-- analysis

• Assume	there	are	n numbers	in	the	input

c2

c1

c3

What	is	the	time	needed	for	the	algorithm	execution?



Insertion	sort	-- analysis
• Assume	there	are	n numbers	in	the	input

• While loop	is	executed	at	most	j-1 times	for	a	
given j	,	so	time	spent	in	loop	is	at	most	(j-1)c2

• Any	iteration	of	the	outer	For loop	takes	at	most	
c1 +(j-1)c2	+	c3

• The	overall	running	time	of	insertion	sort	is
∑ c1	+(j-1)c2	+	c3
𝒏
𝒋$𝟐 =	d1n2 +	d2n	+	d3

c2

c1

c3



Was	our	analysis	too	pessimistic?

• We	just	performed	a	worst-case	analysis	of	
insertion	sort,	which	gave	us	an	upper	bound	of	
the	running	time.

• Was	our	analysis	too	pessimistic?	In	other	words,	
are	there	instances	that	will	cause	the	algorithm	
to	run	with	quadratic	time	in	n?
– The	worst-case	instance	is	a	reverse-sorted	sequence	
a1,	a2,	…	,	an such	that	a1>a2>	…	>an

• Since	worst-case	sequence	exists,	we	say	that	our	
analysis	is	“tight”	and	”not	pessimistic”.



Insertion	sort	growth	rate

• Consider	insertion	sort’s	running	time	as	the	
function	d1n2 +	d2n	+	d3
– The	dominant	part	of	this	function	is	n2 (i.e.	as	n	
becomes	large,	n2 grows	much	faster	than	n)

– Thus,	the	growth	rate	of	the	running	time	is	
determined	by	the	n2 term

–We	express	this	as	O(n2)	(a.k.a.	“big-oh”	notation*)
–We	compare	algorithms	in	terms	of	their	running	
time

*	To	be	formally	defined	later



Algorithm	comparison
• Which	algorithm	is	better?	

– We	answer	this	question	by	comparing	algorithms’	O()	running	
times.

• Example:	Compare	algorithm	A	and	B.	Which	one	is	better?	
– Algorithm	A:					O(n2)
– Algorithm	B:					O(n	log2(n))

By	Cmglee - Own	work,	CC	BY-SA	4.0,	https://commons.wikimedia.org/w/index.php?curid=50321072

• B	is	more	efficient.	
• Intuitively	n2 grows	faster
• We	might	be	wrong	for	small	instances	
but	when n	is	large	B	will	be	faster

• Large	sizes	come	about	very	often	
(Facebook	has	100s	of	millions	of	users)



Announcements

• Read	through	Chapters	1	and	2	in	the	book
• Homework	1	posted,	Due	on	Sep	7


